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Lecture 8                      2012/11/19 
 
Outline 
 
1. Motivation 
2. Stability of Linear Systems 
3. Summary 
 
1. Motivation  

 
•  Stability is a global property of systems. For a linear system with constant 

coefficients, it is solved completely. 
•  Geometric property is presented: Space decomposition based on stability.  
 

2. Stability of Linear Systems  
 
1)  General Definition of Lyapunov Stability 
 
   Consider  

         ( , )x f t x′ = , 0t ≥ , nx R∈ ,                 

where f  is continuous and local Lipschitz on x . Suppose that ( , 0) 0f t ≡ , 0t∀ ≥ , 

i.e. 0x =  is an equilibrium point.  
 

Remark 8.1 If 0( , ) 0f t x ≡ , 0t∀ ≥ , 0y x x= −  transforms ( , )x f t x′ =  into the 

form  

                  
.

0( , ) ( , )
def

y f t y x f t y′ = + =   with ( , 0) 0f t ≡ .  

Therefore, the work on 0x =  is also applicable for 0x x= . So it is always assumed 

the origin being equilibrium without loss of generality.   
 

Definition 8.1 The equilibrium 0x =  of ( , )x f t x′ =  is said to be  

•  stable if 0ε∀ > , there exists 0( , ) 0tδ δ ε= >  s.t.  

0|| ( ) ||x t δ<  ⇒  0 0|| ( , , ) ||x t t x ε< , 0 0t t≥ ≥ ;            (8.1) 

 

•  uniformly stable if 0ε∀ > , there exists ( ) 0δ δ ε= >  s.t. (8.1) is satisfied;  

•  asymptotically stable if 0x =  is stable, and there exists 0( ) 0tη >  s. t. for any 



 2 

0x  with 0 0|| || ( )x tη< , we have  

0 0lim ( , , ) 0
t

x t t x
→∞

= ; 

•  uniformly asymptotically stable if 0x =  is uniformly stable, and there exists 

0η >  s. t. for any 0x  with 0|| ||x η< , we have  

0 0lim ( , , ) 0
t

x t t x
→∞

= , uniformly in 0t ; 

 that is, there exists 0η >  s. t. for 0ε∀ > , there exists ( ) 0T T ε= >  s.t.  

0|| ( ) ||x t η<  ⇒  0 0|| ( , , ) ||x t t x ε< , 0 ( )t t T ε≥ + ;  

•  globally uniformly asymptotically stable if 0x =  is uniformly stable with 

0
lim ( ) 0
ε

δ ε
→

=  and for any η  s. t. for 0ε∀ > , there exists ( ) 0T T ε= >  s.t.  

0|| ( ) ||x t η<  ⇒  0 0|| ( , , ) ||x t t x ε< , 0 ( )t t T ε≥ + .  

 
Remark 8.2 In control, only “uniform” stability notions are concerned because of 
robustness required. In Math, we are maybe interested in all of these notions.  
 
Remark 8.3 All of these are in Lyapunov sense. There are other types of stability 
notions, which will be discussed later in stability theory.  
 
Remark 8.4 Stability notion is in fact the continuous dependence on an initial state 

0x  on [0, )∞ . It is a global issue. Thus, only the local conditions, like the continuous 

and Lipschitz condition, can’t imply stability!! We need additional conditions for sure 
of stability. 
 

Remark 8.5 When ( , ) ( )f t x f x= , there is no difference between “uniform” and 

“non-uniform” for stability. 
 
Remark 8.6 The definitions of Lyapunov stability are based on solutions. Therefore, 
it is qualitative, and difficult to be operated without solving equations.  
 
2) Stability of Linear Systems with Constant Coefficients 
 

Lemma 8.1 0x =  of x A x′ =  ( A  is a real matrix) is stable if and only if A te  is 

bounded for all 0t ≥ , i.e. there exists 0k >  s.t. || ||Ate k≤ , 0≥∀ t . (Homework) 
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Lemma 8.2 0x =  of x A x′ =  is asymptotically stable if and only if lim|| || 0At

t
e

→∞
= .  

(Homework) 
 

Lemma 8.3 0x =  of x A x′ =  is unstable if and only if lim At

t
e

→∞
= ∞ . (Homework) 

 

Remark 8.7 Lemma 8.1 to Lemma 8.3 are based on solutions 0( ) Atx t e x= . However, 

we can find results based on eigenvalues of A  by Lemma 8.1-8.3.  
 

Let j j jw u iv= +  be generalized eigenvectors of A  corresponding to 

j j jiλ α β= + , where if 0jβ = , ⇒  0jv = . Let  

1 2 1 1 2 2{ , , , , , , , , , , }k k k k k m mP u u u u v u v u v+ + + +=    

be a basis of nR  with 2n m k= − . By Decomposition Theorems (Theorem 7.2-7.4), 

we have an explicit solution as follows.  
1 1

1
0 0

cos sin
( ) ( ) [ ]

sin cos ( 1)!
j

m m
j jtAt

n
j j

t t N tx t e x P diag e P I Nt x
t t m

a β β
β β

− −
− 

= = + + + − − 
 , 

where 0jβ =  as j k≤ , and m  is not less than the maximum of the algebraic 

multiplicities of the eigenvalues.    
 
Theorem 8.1 Let A  be a real n n×  matrix with (real or complex) eigenvalues 

1 2, , , nλ λ λ  repeated according to their (algebraic) multiplicity.  

1) 0x =  is stable if and only if Re 0λ ≤ , when Re 0λ = , it has the corresponding 

Jordan block with dimension 1;  

2) 0x =  is asymptotically stable if and only if Re 0λ < .  

3) 0x =  is unstable if and only if there exists at least one 0
jλ  s.t. 0Re 0jλ >  or for 

those with 0Re 0jλ =  it has its Jordan block with dimension more than 1.  

Proof. 1) Re 0λ ≤ , when Re 0λ = , its Jordan blocks have dimension 1 ⇔  

|| ||Ate k≤  ⇔  0x =  is stable;   
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2) Re 0λ <  ⇔  lim|| || 0At

t
e

→∞
=  ⇔  0x =  is asymptotically stable; 

3) There exists at least one 0
jλ  s.t. 0Re 0jλ > , or for those with 0Re 0jλ = , it has its 

Jordan block with dimension more than 1 ⇔  lim At

t
e

→∞
= ∞  ⇔  0x =  is 

unstable.    
 
Remark 8.8 Theorem 8.1 can be operated for checking stability because it is 
determined by eigenvalues of A .  
 
Definition 8.2 Define  

sE =Span
Re 0

{ , : 0}j j ju v Eλλ
α

<
< = ⊕ ;  

uE = Span
Re 0

{ , : 0}j j ju v Eλλ
α

>
> = ⊕ ; 

and 
cE =Span

Re 0
{ , : 0}j j ju v Eλλ

α
=

= = ⊕  

the stable, unstable and center subspaces, respectively.  
 
Theorem 8.2 Let A  be a real n n×  matrix. Then,  

n s u cR E E E= ⊕ ⊕ . 

Moreover, sE , uE  and cE  are invariant under Ate  respectively. Ate xE xE⊂  

for all t R∈ , where , ,x s u= or c .  

Proof. By Direct Sum Theorem, we have n s u cR E E E= ⊕ ⊕  if A  is real. Since 

any generalized eigenvector subspace is invariant under A , so it is invariant under 
Ate . It is noted that sE , uE  and cE  are all composed of some direct sum of 

certain types of generalized eigenvector subspaces, the result is therefore obtained.   
 

Remark 8.9 The qualitative behavior of solutions of x A x′ = :  

•  If 0
sx E∈ , 0( ) At sx t e x E= ⊂  for all t R∈ , and lim ( ) 0

t
x t

→∞
= , lim || ( ) ||

t
x t

→−∞
= ∞ ; 

•  If 0
ux E∈ , 0( ) At ux t e x E= ⊂  for all t R∈ , and lim ( ) 0

t
x t

→−∞
= , lim || ( ) ||

t
x t

→∞
= ∞ ; 

•  If 0
cx E∈ , 0( ) At cx t e x E= ⊂  for all t R∈ , and , ( )x t  either stays bounded or  

lim || ( ) ||
t

x t
→±∞

= ∞ .  
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Definition 8.3 The mapping 0: ( )At n
t e x Rϕ = ∈ → 0( ( ) ( ) ) n

tx t x Rϕ= ∈  is called the 

flow of x A x′ = , where the time t  is regarded as a parameter.  

 

Remark 8.10 Fixing 0x  as a parameter, then 0( ) Atx t e x=  represents a trajectory; 

Fixing t  as a parameter, then 0( ) Atx t e x=  represents a flow. Different angles to 

look at the same object.   
 
Definition 8.4 If all eigenvalues of A  have nonzero real parts, then the flow 

:At n n
t e R Rϕ = →  is called a hyperbolic flow and the corresponding x A x′ =  is 

called a hyperbolic linear system.  
 

Definition 8.5 If n sR E= ( uE ), the origin is called a sink (source) for x A x′ = .  

 
Example 8.1 The matrix  

2 1 0
1 2 0
0 0 3

A
− − 
 = − 
 
 

 

has eigenvectors  

1 1 1

0 1
1 0
0 0

w u iv i
   
   = + = +   
   
   

 for 1 2 iλ = − + ; 

2

0
0
1

u
 
 =  
 
 

 for 2 3λ = .  

Then, sE =Span 1 1{ , }u v  is the 1x - 2x  plan, in which the origin is a stable focus, 

the trajectories in the 1x - 2x  plan spiral forward to the origin and uE = Span 2{ }u  

is the 3x -axis. The trajectories in 3R  are spiral away from the origin and around the 

3x -axis. (See the phase portrait) Obviously, 3 s uR E E= ⊕ . The origin is either a sink 

or a source.  
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Fig. The stable and unstable subspaces  

 
Example 8.2 The matrix 

0 1 0
1 0 0
0 0 2

A
− 

 =  
 
 

 

has eigenvectors  

1 1 1

0 1
1 0
0 0

w u iv i
   
   = + = +   
   
   

 for 1 iλ = ; 

2

0
0
1

u
 
 =  
 
 

 for 2 2λ = .  

Then, cE =Span 1 1{ , }u v  is the 1x - 2x  plan, in which the origin is a center, and 

uE = Span 2{ }u  is the 3x -axis. The trajectories in 3R  are spiral around the 

cylinders 2 2 2
1 2x x c+ =  away from the origin. (See the phase portrait) Obviously, 

3 s uR E E= ⊕ . The origin is either a sink or a source.  
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Fig.2 The centre and unstable subspaces 

 
Example 8.3 The matrix 

2 1 0
1 2 0
0 0 3

A
− − 
 = − 
 − 

 

has eigenvectors  

1 1 1

0 1
1 0
0 0

w u iv i
   
   = + = +   
   
   

 for 1 2 iλ = − + ; 

2

0
0
1

u
 
 =  
 
 

 for 2 3λ = − .  

Then, sE =Span 3
1 1 2{ , , }u v u R= . The origin is a sink. (See the phase portrait) 
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Fig. A linear system with a sink at the origin 
 

3) Stability of Linear Time-Varying Systems 
                      

Consider ( )x A t x′ = , where ( )A t  is continuous on 0t ≥ .  

Theorem 8.3 0x =  is uniformly stable if and only if 0( , )t tΦ  is bounded 

uniformly for 0 0t ≥ , i.e. there exists 0k > , independent of 0 0t ≥ , s.t. 

0|| ( , ) ||t t kΦ ≤  for 0 0t t≥ ≥ . 

Proof. (⇐ ) Since 0 0( ) ( , )x t t t x= Φ , then we have  

0 0 0 0 0|| ( ) || || ( , ) || || ( , ) || || || || ||x t t t x t t x k x ε= Φ ≤ Φ ≤ < . 

From the above, we find 0
k
εδ = > . Then, for 0ε∀ > , there exists 0

k
εδ = >  s.t.  

0|| ||x δ<  ⇒  0|| ( ) || || ||x t k x kδ ε≤ < = . 

0x =  is uniformly stable by definition.  

(⇒ ) Since 0x =  is uniformly stable, then 0ε∀ > , there exists ( ) 0δ ε >  s.t. 

0|| ||x δ<  ⇒  0 0|| ( ) || || ( , ) ||x t t t x ε= Φ <  for 0 0t t≥ ≥ . 

Take 0 2j jx eδ
= , where { } {(0, ,1, ,0) }T

je =    is a basis of nR . Then 

0|| ||
2jx δ δ= <  ⇒  0 0|| ( , ) ||jt t x εΦ <  for 0 0t t≥ ≥ . 

Let 0 0( , ) ( , )j jt t t t eΦ = Φ . 0( , )j t tΦ  is a t hj  column of 0( , )t tΦ . Since  
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0 0 0 0|| ( , ) || || ( , ) || || ( , ) ||
2 2j j jt t t t e t t xδ δ eΦ = Φ = Φ < , 

then, we have  

             0 0
1

|| ( , ) || || ( , ) ||
2

n

j
j

t t t t n kδε
=

Φ ≤ Φ < =∑  for 0 0t t≥ ≥ , 

where k  is independent of 0 0t ≥ .    

 
Theorem 8.4 0x =  is uniformly asymptotically stable if and only if there exist 

0k >  and 0η > , both independent of 0 0t ≥ , such that  

0( )
0|| ( , ) || t tt t ke η− −Φ ≤  for 0 0t t≥ ≥ .  

Proof. (⇐ ) Since 0 0( ) ( , )x t t t x= Φ , then we have 

0( )
0 0 0 0 0|| ( ) || || ( , ) || || ( , ) || || || || || t tx t t t x t t x k x e η− −= Φ ≤ Φ ≤  for 0 0t t≥ ≥ . 

Then, 0x =  is uniformly asymptotically stable by definition.  

(⇒ ) Since 0x =  is uniformly stable, there exists 0k > , independent of 0 0t ≥ , s.t.  

0|| ( , ) ||t t kΦ ≤ , 0 0t t≥ ≥ ,  

and 0x =  is uniformly attractive, i.e. lim ( ) 0
t

x t
→∞

= , uniformly for 0 0t ≥  by 

definition, which implies that 0lim ( , ) 0
t

t t
→∞

Φ = , uniformly for 0 0t ≥ . For 1 0ee −= > , 

there exists 0>T  s.t.  

0t t T≥ +  ⇒  1
0|| ( , ) ||t t ee −Φ < = . 

This means that 1
0|| ( , ) ||t t ee −Φ < =  as long as 0t t T− ≥ .  

Then, for any 0tt > , there exists an integral 0N >  s.t. 0t t NT− ≤ . Let 

0min{ | }N N t t NT= − ≤ , Then 

0( 1)N T t t NT− < − ≤ . 

By the property 2) of Theorem 6.8, we have  

),())2(,)1(())1(,(),( 000000 tTtTNtTNtTNtttt +Φ−+−+Φ−+Φ=Φ  . 

Then, it follows  

||),(||||))2(,)1((||||))1(,(||||),(|| 000000 tTtTNtTNtTNtttt +Φ−+−+Φ−+Φ≤Φ   
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0

1
t t

N N Tk eke ekee
−

−− −≤ ≤ ≤ 0( )t tk e η− −= , 0tt ≥ , 

where 0k ke= >  and 1 0
T

η = >  are independent of 0 0t ≥ .    

 
Remark 8.11 Theorem 8.4 shows that, for linear systems, uniformly asymptotic 
stability is equivalent to its exponential stability.  
 
Remark 8.12 Theorem 8.3 to Theorem 8.4 are also based on solutions 

0 0( ) ( , )x t t t x= Φ . It is conceptually important, not workable for checking stability 

without solving equations. Can we use eigenvalues like x A x′ =  for ( )x A t x′ = . The 

answer is no in general!  
 
Example 8.4 Counter-example: 










+−−−
−+−

=
ttt
ttt

tA
2

2

sin5.11cossin5.11
cossin5.11cos5.11

)( , 

It has two eigenvalues: 1,2 ( ) 0.25 0.25 7t iλ = − ±  satisfying 1,2Re ( ) 0.25 0tλ ≡ − <  

for all 0t ≥ . However, its principle matrix solution is solved by  










−
=Φ

−

−

tete
tete

t tt

tt

cossin
sincos

)0,( 5.0

5.0

, 

and its 2-norm computed by  

2 max|| ( ,0) || ( ( ,0) ( ,0)Tt t tλΦ = Φ Φ , 

where 







=ΦΦ

− t

t
T

e
e

tt 20
0

)0,()0,( . So 2
2|| ( ,0) ||

t

t eΦ =  is unbounded. 0x =  is 

unstable by Theorem 8.3.  
 

What about a practical result for ( )x A t x′ = . It is still open so far. However, it 

has some available results. 
 

Theorem 8.5 If ( )A t  is symmetric, i.e. ( ) ( )TA t A t=  and continuous on [0, )∞ . If 

the eigenvalues ( )j tλ  ( 1, 2, ,j n=  ) of ( )A t  satisfy 
1
max ( )jj n

tλ a
≤ ≤

≤ , independent of 

0 0t ≥  for 0[ , )t t∈ ∞ , then we have  

0( )
2 0 2|| ( ) || || ( ) ||t tx t e x tα −≤ , 0t t≥ .  
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In particular, if 0α ≤ , then 0x =  is uniformly stable and if 0α < , then 0x =  is 
uniformly asymptotically stable.  

Proof. Since ( ) ( )TA t A t= , there exists a matrix ( )Q t  with 1( ) ( )TQ t Q t−=  s.t.  

1 2( ) ( ) ( ) ( ( ), ( ), , ( ))T
nQ t A t Q t diag t t tλ λ λ=  , 

where ( )j tλ  must be real.  

Set ( ) ( ) ( )v t Q t w t=  and we have  

1( ), ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( )v t v t Q t w t Q t w t w t Q t Q t w t w t w t−= = = . 

Then, 
1( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )v t A t v t Q t w t A t Q t w t w t Q t A t Q t w t−= =  

        ( ), ( ) ( ) ( ) ( ) ( ), ( ) ( ), ( )Tw t Q t A t Q t w t w t w t v t v tα α= ≤ = . 

Based on ( ), ( ) ( ) ( ), ( )v t A t v t v t v tα≤  and ( ) ( )TA t A t= , we have  

2
2{|| ( ) || } ( ), ( ) 2 ( ), ( ) ( ) 2 ( ), ( )d dx t x t x t x t A t x t x t x t

dt dt
α= = ≤  

2
22 || ( ) ||x tα= .  

Integrating the inequality on both sides from 0t  to t  gives  

0

2 2 2
2 0 2 2|| ( ) || || ( ) || 2 || ( ) ||

t

t
x t x t x s dsα≤ + ∫ . 

Therefore, by Gronwall inequality  
02 ( )2 2

2 0 2|| ( ) || || ( ) || t tx t x t e α −≤ , 0t t≥ . 

which implies  

 0( )
2 0 2|| ( ) || || ( ) || t tx t x t eα −≤ , 0t t≥ .     

 
Remark 8.13 The result of Theorem 8.5 looks nice, but conservative. Many 
symmetric matrices of ( )A t  don’t satisfy the condition of 

1
max ( )jj n

tλ a
≤ ≤

≤ . See 

examples as follows.  

1

1 2cos 0
( )

0 1 2cos
t

A t
t

− + 
=  − − 

; 

2

1 max{2cos , 2cos } 0
( )

0 1 max{2cos , 2cos }
t t

A t
t t

− + − 
=  − − − 

. 
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1( )A t  and 2 ( )A t  are both symmetric and have the same eigenvalues, satisfying  

1 1max{ ( ), ( )} 1 0t tλ λ a≤ = > , t R∀ ∈ . 

However, the direct computation by solving equations leads 1( )x A t x′ =  is uniformly 

asymptotically stable while 2 ( )x A t x′ =  is unstable.  

 
Remark 8.14 The examples in Remark 8.13 also illustrate that the stability doesn’t 
only depend on the evolution of the eigenvalues. The evolution of the corresponding 
(generalized) eigenvectors will also play a crucial role. How to find practical method 

to test the stability of ( )x A t x′ =  is still open so far!!! See the problem 1 in the 

Springer book of “Open Problems in Mathematical Systems and Control Theory” by 
V. D. Blondel, E. D. Sontag, M. Vidyasagar and J. C. Willems, 1998.  
 

Remark 8.15 A useful result for ( )x A t x′ =  is Wazewski inequality:  

Let max[ ( ) ( )]TA t A tλ +  and min[ ( ) ( )]TA t A tλ +  be the maximum and the 

minimum eigenvalues of ( ) ( )TA t A t+ . Then any solution ( )x t  of ( )x A t x′ =  

satisfies  
min max

0 0

1 1[ ( ) ( )] [ ( ) ( )]
2 2

0 0|| || ( ) || ||
t tT T
t t

A s A s ds A s A s ds
x e x t x e

λ λ+ +∫ ∫
≤ ≤ , 0t t≥ .  

Based on this Wazewski inequality, it can develop several results of stability; some of 
them take Theorem 8.5 as a corollary. However, this inequality sill suffers the same 
problem mentioned in Remark 8.14.  
  
4. Summary  
 
•  For linear systems with constant coefficients, eigenvalues determine stability (in 

Lyapunov sense).  
 

•  n s u cR E E E= ⊕ ⊕ , each subspace is A -invariant and also flow invariant. 

Important for geometric analysis of ODE.  
 
•  Some important geometric notions: trajectory and flow; sink and source; 

hyperbolic flow and hyperbolic system; stable, unstable and center subspace.  
 
•  For linear time varying systems, there is no general method for testing stability. It 

is still open. However, there exist partial results for stability that are conservative 
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and restrictive. Even for linear periodic systems, it seems no complete solution.  
 
Homework  
 
Prove lemma 8.1-8.3, which is similar to the proof of Theorem 8.3-8.4.  
 


